
DutchX Documentation

https://gitter.im/gnosis/DutchX

January 2019

https://gitter.im/gnosis/DutchX

Contents

1 Specifications 3
1.1 Introduction . 3
1.2 Basic mechanisms . 3

1.2.1 Exchange . 3
1.2.2 Auction . 3
1.2.3 Claiming . 4

1.3 Advanced mechanisms . 5
1.3.1 Adding a token pair . 5
1.3.2 Scheduling . 5
1.3.3 Liquidity Contribution & MGN tokens 5
1.3.4 Price oracle . 6

2 Math in DutchX 8
2.1 Notation . 8
2.2 Non-core functions . 8

2.2.1 getPriceInPastAuction . 8
2.2.2 getPriceOfTokenInLastAuction 9
2.2.3 getCurrentAuctionPrice 9
2.2.4 getFeeRatio . 10
2.2.5 settleFee . 10
2.2.6 scheduleNextAuction . 11
2.2.7 clearAuction . 11

2.3 Core functions . 11
2.3.1 postSellOrder . 11
2.3.2 claimSellerFunds . 12
2.3.3 postBuyOrder . 13
2.3.4 claimBuyerFunds . 13

3 States 15
3.1 Introduction . 15

3.1.1 Special case: “zero” auction 16
3.1.2 Special case: adding a token pair 16

3.2 postSellOrder . 16
3.3 claimSellerFunds . 17

1

3.4 postBuyOrder . 17
3.5 claimBuyerFunds . 17

2

Chapter 1

Specifications

1.1 Introduction

The Dutch Exchange is a fully decentralized exchange based on the Dutch auc-
tion principle, featuring a price mechanism that starts with a high price which
falls monotonically. Eventually, every successful buyer pays the same price once
the auction closes, ensuring orders don’t have to be cancelled when markets
fluctuate. This mechanism allows for a more streamlined trading experience
and, most importantly, eliminates the bottlenecks of decentralized order book
exchanges such as front-running and scaling difficulties.

1.2 Basic mechanisms

1.2.1 Exchange

The exchange runs as a set of token pairs, which do not have order: an ETH-
GNO token pair is a GNO-ETH.

Each pair consists of two opposite/symmetrical auctions – order does matter
for an auction.

Opposite auctions always begin at the same time (but may close at different
times). “Closing” and “clearing” auctions are synonyms for the purposes of our
exchange.

1.2.2 Auction

Each auction follows the same mechanism: sell orders are accepted before an
auction begins. We call the auctioned amount of sell tokens the sell volume.
Consequently, an auction always has a constant sell volume while it’s running.

Buy orders are accepted only during an auction. The amount of buy tokens
is called the buy volume, and an auction closes when the sell volume * current
price is smaller than or equal to the buy volume. In fact, the amount processed

3

by the final buy order should be such that the sell volume * current price is
equal to the buy volume (up to rounding errors).

Current price P (t) at any point in time is a function of time. For t in hours
and t ∈ [0, 24], it is given by the reciprocal function that satisfies:

P (0) = 2x,

P (6) = x,

P (24) = 0,

and 0 for t > 24, where x is a weighted average of the closing prices of the
two last auctions, weighted by their trading volume. Consequently, the price
function is until 24 hours, a monotonically decreasing function. For t ∈ [0, 24]
and x = 1, here is a graph of the price function and here’s an image:

1.2.3 Claiming

At any point during the auction, a buyer may claim his/her intermediate funds.
As long as the auction clears in a later Ethereum block, the price will drop
after that, so he/she is guaranteed to get more tokens when claiming again in
the future. A buyer’s funds are given by his/her balance divided by the price
(current or closing, depending on time of claim).

Sellers may only claim their funds (in buy tokens) after an auction has
cleared. A seller’s funds are given by his/her balance * price.

4

https://www.desmos.com/calculator/i2vt0kumyw

Buyers and sellers may also claim their remaining funds at any point in the
future.

1.3 Advanced mechanisms

1.3.1 Adding a token pair

Token pairs are added by providing 5 variables: addresses of 2 distinct tokens,
sell funding for both tokens and what we call an initial closing price. For pairs
that don’t include ETH, we require there to exist ETH-token pairs for both
tokens.

For ETH-token pairs, the sell funding of ETH must be at least $1,000. For
pairs that don’t include ETH, the combined value of sell funding of both pairs
must be at least $1,000.

1.3.2 Scheduling

When a token pair is added, the first auction pair is scheduled to begin in 6
hours.

When both auctions in a token pair close, we check if either has received
at least $1000 worth of sell funding. If not, the token pair goes into a paused
state until that condition is satisfied. The next auction pair is then scheduled
to begin in 10 minutes.

1.3.3 Liquidity Contribution & MGN tokens

All buy and sell orders are subject to a liquidity contribution. Let F (b, t) be
the liquidity contribution function, where b is a user’s balance of MGN and t is
the total supply of MGN. F is a step function that follows the following graph:

5

A user may pay up to one half of the liquidity contribution fee with OWL
tokens. In that case we use the conversion 1 OWL = 1 USD.

Sell funding supplied with adding a new token pair also incurs liquidity
contribution.

The last buy order does not have to pay a liquidity contribution.
Finally, every trader receives 1 MGN for each 1 ETH of claimed funds. This

conversion is done using the price oracle at the time of the auction.

1.3.4 Price oracle

We provide a reliable price oracle for ERC-20 tokens to ETH. This function
computes an average of the closing prices of the two opposite auctions ETH-
token and token-ETH. This average is weighted by the trading volume of those
two auctions, in the non-ETH token.1

We start this process at the current auctionIndex. I.e. if one auction had
closed, the price oracle would output only its closing price.

1The reader might wonder why we weigh in the non-ETH token rather than by ETH. This
is for computational reasons - the math turns out to be much simpler this way, eliminating
rounding errors caused by deadline with overflow issues.

6

This function is used to determine the passing of thresholds in adding a
token pair and scheduling next auction pair, together with an external ETH-
USD oracle, as well as in settling fees (calculating how many OWL’s must be
spent) and issuing MGN.

A generalised version (one where neither token has to be ETH) is also used
in determining the current price of all auctions on the Dutch Exchange.

7

Chapter 2

Math in DutchX

This is an attempt to prove math in DutchX code meets the specifications laid
out in Chapter 1. In particular, we want to show the following things: rounding
errors behave as expected, overflow and underflow never happen and there isn’t
a problem with the asynchronous nature of blockchain.

2.1 Notation

We use AB to denote auction with sellToken A and buyToken B. We may
abbreviate ETH and Token auctions as ET or TE.

We use VS(AB), VB(AB) for sellVolume, buyVolume (respectively) of auc-
tion AB.

We use Pc(AB, i) for closingPrice of auction AB with index i. If index is
obvious, we use Pc(AB).

2.2 Non-core functions

We’ll start by discussing “non-core functions”.

2.2.1 getPriceInPastAuction

(token1, token2, auctionIndex) → fraction
If both tokens are equal, it ouputs 1/1. If they’re not, it loops back, starting

from auctionIndex, considering the two closingPrices for each auctionIndex.
Once both terms of either closingPrice are > 0, the loop ends.

This loop will always end, because for both auctions, closingPrices[0] had
num, den > 0 (see addTokenPair).

We can have 2 cases:

1. One num = 0, the other > 0. In that case output will be the closingPrice
of the larger one.

8

2. Both num > 0. In that case the ouput is a weighted average of both
closingPrices, weighted by the trading volume. We get:

p =
VB(ET)

VB(ET) + VS(TE)
∗ 1

Pc(ET)
+

VS(TE)

VB(ET) + VS(TE)
∗ Pc(TE)

p =
VB(ET) ∗ VSET

VB(ET) + VS(TE) ∗ VB(TE)
VS(TE)

VB(ET) + VS(TE)

p =
VS(ET) + VB(TE)

VB(ET) + VS(TE)

NO DIVISION, NO OVERFLOW, NO ASYNC ISSUES.

2.2.2 getPriceOfTokenInLastAuction

(token) → fraction
Does two things:

1. Gets latest auction index of token-ETH (if token = ETH, it will output
0).

2. calls getPriceInPastAuction with those tokens and that index

NO DIVISION, NO OVERFLOW, NO ASYNC ISSUES.

2.2.3 getCurrentAuctionPrice

(sellToken, buyToken, auctionIndex) → fraction
Should disambiguate based on auctionIndex and state:

1. If auction has closed, output closingPrice.

2. If auction has not begun yet, output 0/0.

3. If auction is running, call getPriceInPastAuction and use price function
to output price.

4. If the output is smaller than buyVolume
sellVolume , we want to output that. In buy

order, we check whether this is true. Hence the only time this can be
true is when the lsat buy order hadn’t cleared the auction, but the price
dropped sufficiently later. Since buyers may claim intermediate amounts,
this prevents them from claiming more than they will be allowed once the
auction clears.

NO DIVISION, NO OVERFLOW, NO ASYNC ISSUES.

9

2.2.4 getFeeRatio

(user) → fraction
Should do two things:

1. Get totalMGN and user’s balanceOfMGN.

2. Should output fee ratio based on fee function.

NO DIVISION, NO OVERFLOW, NO ASYNC ISSUES.

2.2.5 settleFee

(primaryToken, secondaryToken, auctionIndex, user, amount) → amountAfter-
Fee

(Input vars aren’t called sellToken, buyToken, because they are unrelated to
sellToken and buyToken of the function they’re called in.)

Should do several things:

1. Get feeRatio.

2. Multiply amount by fee ratio to get fee.

3. If fee > 0:

(a) Find USD value of fee (using priceOracle and ETHUSDPrice).

(b) Allow user to spend up to half of that with OWL tokens.

4. If fee = 0, output amount. Otherwise, output amount − fee.

YES DIVISION, NO OVERFLOW, NO ASYNC ISSUES.

Division

1. To calculate fee.

2. To calculate feeInETH.

3. To calculate amountOfOWLBurned.

4. Adjust fee.

Results:

1. fee will be slightly smaller.

2. feeInUSD will be slightly smaller.

3. amount of OWL a user can burn will be slightly smaller.

4. fee will by adjusted by a slightly smaller amount (will be larger than should
be per how many OWL’s user burned). This doesn’t break anything,
because the same number is added to extraTokens as is subtracted from
amount to get amountAfterFee.

10

2.2.6 scheduleNextAuction

(sellToken, buyToken) → null
Should:

1. Fetch price oracles of both tokens.

2. Find sellVolumesCurrent of both tokens in USD.

3. Set auctionStart in 10 minutes if both are ≥ the threshold OR if at least
one is ≥ the threshold and 24 hours have passed from last clearing time.
Otherwise, set auctionStart to 1.

NO DIVISION, NO OVERFLOW, NO ASYNC ISSUES when called from
either clearAuction or postSellOrder.

2.2.7 clearAuction

(sellToken, buyToken, auctionIndex, sellVolume) → null
Called from: postBuyOrder.
This function can do many things:

1. Save buyVolume
sellVolume as closingPrice. Should always do so.

2. clear auctionPair: should do so if if opposite is a 0 auction OR price
reached 0 OR opposite auction closed. This does several things:

• If opposite auction is non-zero and hasn’t cleared yet, save its closing
price

• Sets sellVolumeCurrent to sellVolumeNext for both auctions

• Resets sellVolumeNext and buyVolumes for both auctions

• Saves clearingTime according to when the auction closed (i.e. when
currentAuctionPrice = closignPrice, i.e. when sellVolume * cur-
rentAuctionPrice = buyVolume). Due to rounding errors, there might
be multiple times when this was true, in that case, return one of them
(exact precision to the second is not one of the requirements of this
function).

• Increments auctionIndex

• calls scheduleNextAuction.

NO DIVISION, NO OVERFLOW, NO ASYNC ISSUES.

2.3 Core functions

2.3.1 postSellOrder

(sellToken, buyToken, auctionIndex, amount) → null
Should:

11

1. Adjust amount by user’s balance.

2. Require amount and latestAuctionIndex > 0.

3. If user specified auctionIndex 0, adjust is to the correct one. Otherwise,
require it is the correct one.

4. Settle fee and calculate amountAfterFee.

5. Adjust user’s balances by amount and sellerBalances and sellVolumes by
amountAfterFee.

6. If we’re in threshold–waiting period, call scheduleNextAuction.

NO DIVISION, NO OVERFLOW, NO ASYNC ISSUES.

2.3.2 claimSellerFunds

(sellToken, buyToken, user, auctionIndex) → (returned, MGNIssued)
Should:

1. Require sellerBalance > 0.

2. Require auction to have closed AND not be a zero auction (this is done
by requiring den > 0).

3. Calculate returned amount.

4. If both tokens are approved, calculate ETH value of returned and issue
that many MGN.

5. Reset sellerBalances and update user’s balances.

YES DIVISION, NO OVERFLOW, NO ASYNC ISSUES.

Division

1. To calculate returned.

2. To calculate MGNIssued.

Results:

1. returned will be slightly smaller.

2. amount of MGN issued will be slightly smaller.

12

2.3.3 postBuyOrder

(sellToken, buyToken, auctionIndex, amount) → null
Should:

1. Make sure auction hasn’t closed and is running.

2. Make sure auctionIndex is correct.

3. Adjust amount by user’s balances (call the result a).

4. Find current price and use it to calculate outstandingVolume, call that
VO.

5. Since a ≥ 0, we have just a few cases:

(a) VO ≤ 0: should merely clear auction.

(b) 0 < VO ≤ a: set a = VO, lower user’s balances and increase buyer-
Balances and buyVolumes by a. Clear auction.

(c) 0 < a < VO: settle fee and find amountAfterFee. Lower user’s bal-
ances by a and increase buyerBalances and buyVolumes by amountAfter-
Fee.

YES DIVISION, NO OVERFLOW, NO ASYNC ISSUES

Division

1. Calculate outstandingVolume

Results:

1. outstandingVolume will be slightly smaller, so closingPrice will be smaller.
Since all calculations use tokens’ decimal places (usually 18), the difference
will be absolutely marginal to have significance.

2.3.4 claimBuyerFunds

(sellToken, buyToken, user, auctionIndex) → (returned, MGNIssued)
Should:

1. Make sure particular auction has ever run.

2. (a) Auction is still running: Compute unclaimed funds by dividing by
current price and subtracting claimedAmounts. Add that amount to
claimedAmount and user’s balances.

(b) Auction has closed - Computer unclaimed funds by dividing by clos-
ing price and subtracting claimedAmounts. Add extraTokens based
on user’s proportion of buyerBalance to buyVolume. If both tokens
are approved, find ETH value and issue MGN. Reset buyerBalances
and claimedAmounts and update user’s balances.

YES DIVISION, NO OVERFLOW, NO ASYNC ISSUES.

13

Division

1. calculate unclaimedBuyerFunds

2. calculate tokensExtra

3. calculate MGNIssued

Results:

1. unclaimedBuyerFunds will be slightly smaller

2. extra tokens will be slightly smaller

3. MGNIssued will be slightly smaller

14

Chapter 3

States

3.1 Introduction

Each token pair consists of two opposite auctions. That auction pair has two
variables in common: latest auction index and auction start. Here is a diagram
illustrating the life of an auction during one auction index:

previous
auction

pair ended

sell orders

1

threshold
is reached
→auctions
scheduled
in 10 min

2

auction
pair starts

3

buy orders

first auction
clears →

closingPrice
saved

4

second
auction

clears →
auction

pair clears

During (1) and (2), only sell orders are accepted. Since auctionIndex has already
been incremented, sell orders must use latestAuctionIndex and they go into
sellVolumesCurrent. In (1), auctionStart is 1, in all other states, it’s > 1.

Once the threshold has been reached, auctionStart is set to now +10 minutes.
When that time is reached, both auctions begin. Sell orders for the current

auction are no longer accepted (they must use latestAuctionIndex +1 and they
go into sellVolumesNext).

Once the first auction clears, the closingPrice is saved.
When the second auction clears, the entire auction pair clears (see Section

2.2.7, clearAuction).

15

3.1.1 Special case: “zero” auction

This case covers the situation when one auction is a 0 auction. A “zero” auction
is one with sellVolume 0 (and consequently buyVolume 0).

In this case, the 0 auction is cleared from the start.

previous
auction

pair ended

sell orders

1

threshold
is reached
→auctions
scheduled
in 10 min

2

auction
pair starts

buy orders

4

first auction
clears →
auction

pair clears

3.1.2 Special case: adding a token pair

This case covers the situation when a token pair is added. The threshold is
reached by definition, so period (1) isn’t present.

token pair
added

→ auctions
scheduled
in 6 hrs

sell orders

2

auction
pair starts

buy orders

3

first auction
clears →

closingPrice
saved

4

second
auction

clears →
auction

pair clears

3.2 postSellOrder

This function is complicated only in one regard: it must handle two different
cases. These are disambiguated based on current auctionStart:

If we’re in periods (1) or (2) in the diagrams, auctionIndex should be lates-
tAuctionIndex and the volume should go to sellVolumesCurrent. This case is
found if auctionStart is 1 (period (1)) OR if auctionStart > now (period (2)).
Also, in period (1), we call scheduleNextAuction to check whether next auction
can be scheduled.

If we’re in periods 3 or 4, auctionIndex should be latestAuctionIndex +1,
because we are posting into next auction (and volume should go to sellVolumes-
Next). This happens when the first case doesn’t happen.

16

3.3 claimSellerFunds

ClaimSellerFunds just checks den > 0, which happens to handle all cases that
we want to revert:

1. Particular auction hasn’t started.

2. Particular auction hasn’t closed.

3. It is a 0 auction.

If price reached 0, returned will be 0, so no balances will be added:

if (returned > 0) {

balances[buyToken][user] += returned;

}

3.4 postBuyOrder

Several requirements must be met:

1. den == 0

2. auctionStart ≤ now

3. auctionIndex == latestAuctionIndex

4. auctionStart > 1

5. sellVolume > 0

and we can see that these requirements place are necessary and sufficient
conditions.

3.5 claimBuyerFunds

We use the value of den to determine the state. If den = 0, auction is running.
Otherwise, the auction has closed.

17

	Specifications
	Introduction
	Basic mechanisms
	Exchange
	Auction
	Claiming

	Advanced mechanisms
	Adding a token pair
	Scheduling
	Liquidity Contribution & MGN tokens
	Price oracle

	Math in DutchX
	Notation
	Non-core functions
	getPriceInPastAuction
	getPriceOfTokenInLastAuction
	getCurrentAuctionPrice
	getFeeRatio
	settleFee
	scheduleNextAuction
	clearAuction

	Core functions
	postSellOrder
	claimSellerFunds
	postBuyOrder
	claimBuyerFunds

	States
	Introduction
	Special case: ``zero" auction
	Special case: adding a token pair

	postSellOrder
	claimSellerFunds
	postBuyOrder
	claimBuyerFunds

