
DutchX Documentation

https://gitter.im/gnosis/DutchX

May 2018

https://gitter.im/gnosis/DutchX

Contents

1 Speci�cations 3
1.1 Introduction . 3
1.2 Basic mechanisms . 3

1.2.1 Exchange . 3
1.2.2 Auction . 3
1.2.3 Claiming . 4

1.3 Advanced mechanisms . 5
1.3.1 Adding a token pair . 5
1.3.2 Scheduling . 5
1.3.3 Fees & MGN tokens . 5
1.3.4 Price oracle . 6

2 Math in DutchX 8
2.1 Notation . 8
2.2 Non-core functions . 8

2.2.1 getPriceInPastAuction . 8
2.2.2 getPriceOfTokenInLastAuction 9
2.2.3 getCurrentAuctionPrice 9
2.2.4 getFeeRatio . 10
2.2.5 settleFee . 10
2.2.6 scheduleNextAuction . 11
2.2.7 clearAuction . 11

2.3 Core functions . 11
2.3.1 postSellOrder . 11
2.3.2 claimSellerFunds . 12
2.3.3 postBuyOrder . 12
2.3.4 claimBuyerFunds . 13

3 States 15
3.1 Introduction . 15

3.1.1 Special case: \zero" auction 16
3.1.2 Special case: adding a token pair 16

3.2 postSellOrder . 16
3.3 claimSellerFunds . 17

1

3.4 postBuyOrder . 17
3.5 claimBuyerFunds . 17

2

Chapter 1

Speci�cations

1.1 Introduction

The Dutch Exchange is a fully decentralized exchange based on the Dutch auc-
tion principle, featuring a price mechanism that starts with a high price which
falls monotonically. Eventually, every successful buyer pays the same price once
the auction closes, ensuring orders don't have to be cancelled when markets
uctuate. This mechanism allows for a more streamlined trading experience
and, most importantly, eliminates the bottlenecks of decentralized order book
exchanges such as front-running and scaling di�culties.

1.2 Basic mechanisms

1.2.1 Exchange

The exchange runs as a set of token pairs, which do not have order: an ETH-
GNO token pair is a GNO-ETH.

Each pair consists of two opposite/symmetrical auctions { order does matter
for an auction.

Opposite auctions always begin at the same time (but may close at di�erent
times). \Closing" and \clearing" auctions are synonyms for the purposes of our
exchange.

1.2.2 Auction

Each auction follows the same mechanism: sell orders are acceptedbefore an
auction begins. We call the auctioned amount of sell tokens thesell volume.
Consequently, an auction always has a constant sell volume while it's running.

Buy orders are accepted onlyduring an auction. The amount of buy tokens
is called the buy volume, and an auction closes when the sell volume * current
price is smaller than or equal to the buy volume. In fact, the amount processed

3

by the �nal buy order should be such that the sell volume * current price is
equal to the buy volume (up to rounding errors).

Current price P(t) at any point in time is a function of time. For t in hours
and t 2 [0; 24], it is given by the reciprocal function that satis�es:

P(0) = 2 x;

P(6) = x;

P(24) = 0 ;

and 0 for t > 24, wherex is a weighted average of the closing prices of the
two last auctions, weighted by their trading volume. Consequently, the price
function is until 24 hours, a monotonically decreasing function. For t 2 [0; 24]
and x = 1, here is a graph of the price function and here's an image:

1.2.3 Claiming

At any point during the auction, a buyer may claim his/her intermediate funds.
As long as the auction clears in a later Ethereum block, the price will drop
after that, so he/she is guaranteed to get more tokens when claiming again in
the future. A buyer's funds are given by his/her balance divided by the price
(current or closing, depending on time of claim).

Sellers may only claim their funds (in buy tokens) after an auction has
cleared. A seller's funds are given by his/her balance * price.

4

Buyers and sellers may also claim their remaining funds at any point in the
future.

1.3 Advanced mechanisms

1.3.1 Adding a token pair

Token pairs are added by providing 5 variables: addresses of 2 distinct tokens,
sell funding for both tokens and what we call aninitial closing price . For pairs
that don't include ETH, we require there to exist ETH-token pairs for both
tokens.

For ETH-token pairs, the sell funding of ETH must be at least $10,000. For
pairs that don't include ETH, the combined value of sell funding of both pairs
must be at least $10,000.

1.3.2 Scheduling

When a token pair is added, the �rst auction pair is scheduled to begin in 6
hours.

When both auctions in a token pair close, we check if either has received
at least $1000 worth of sell funding. If not, the token pair goes into a paused
state until that condition is satis�ed. The next auction pair is then scheduled
to begin in 10 minutes.

1.3.3 Fees & MGN tokens

All buy and sell orders are subject to fees. LetF (b; t) be the fee function, where
b is a user's balance of MGN andt is the total supply of MGN. F is a step
function that follows the following graph:

5

	Specifications
	Introduction
	Basic mechanisms
	Exchange
	Auction
	Claiming

	Advanced mechanisms
	Adding a token pair
	Scheduling
	Fees & MGN tokens
	Price oracle

	Math in DutchX
	Notation
	Non-core functions
	getPriceInPastAuction
	getPriceOfTokenInLastAuction
	getCurrentAuctionPrice
	getFeeRatio
	settleFee
	scheduleNextAuction
	clearAuction

	Core functions
	postSellOrder
	claimSellerFunds
	postBuyOrder
	claimBuyerFunds

	States
	Introduction
	Special case: ``zero" auction
	Special case: adding a token pair

	postSellOrder
	claimSellerFunds
	postBuyOrder
	claimBuyerFunds

